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Abstract-The rate of propagation of the leading edge effect (LEE) during transient natural convection 
adjacent to a vertical solid cylinder is estimated from five different criteria. The cylinder has an appreciable 
thermal capacity and is subjected to a sudden heat generation. Numerical results are presented for a wide 
range of cylinder radii and heat flux values for two fluids, air and water. It is found that unlike the case of 
a flat platk, there is no unique criterion which would always estimate the fastest rate of propagation of 
LEE in water. However in air. the criterion due to Brown and Riley (J. Fluid Mech. 59, 225-237 (1973)) 
always predicts the fastest rate of propagation. Also, the effect of c$&der radius on the rate at which the 
LEE propagates through different fluids is different. For identical conditions, the LEE propagates faster 
in air than in water, as expected. Present results obtained by dropping the curvature terms in the governing 

equations match very well with previous analytical results for a flat plate. 

1. INTRODUCTION 

TRANSIENT natural convection is of great importance 
in many industrial applications such as in nuclear and 
electronics industries. It arises out of a sudden change 
in surface conditions such as heat flux and tempera- 
ture. In any system, it takes a specific time for natural 
convection to set in. During the initial period, heat is 
transferred by pure conduction, and a one-dimensional 
form of boundary layer equations hold. However, this 
one-dimensional process breaks down on the arrival 
of the LEE. This effect is marked by the appearance 
of the cross-stream velocity component, and travels 
at a finite speed downstream. Subsequent to the 
arrival of LEE, only transient boundary layer equa- 
tions hold. 

Siegel [l] was perhaps the first to point out the effect 
of LEE and time duration of the one-dimensional 
conduction process for a flat plate, while the transient 
analysis was initiated by Illingworth [2]. A detailed 
literature survey on transient free convection adjacent 
to a flat plate and a vertical cylinder was recently 
provided by Velusamy and Garg [3]. Goldstein and 
Briggs [4] presented solutions for the duration of one- 
dimensional process from the conduction analysis of 
plates and cylinders. Their analysis includes various 
boundary conditions such as sudden change in surface 
temperature and surface heat flux. However, for a flat 
plate, Mollendorf and Gebhart [S] and Mahajan and 
Gebhart [6] found that the actual rate of propagation 

of LEE is about 20% faster than that predicted by 
Goldstein and Briggs [4]. Yang [7] and Nanbu [8] 
analyzed the transient boundary layer equations and 
concluded that the departure from the one-dimen- 
sional process occurs at a critical time when an essen- 
tial singularity appears in the governing equations. 
Brown and Riley [9] pointed out that this critical 
time resulted in a leading edge propagation criterion 
different from that proposed by Goldstein and Briggs 
[4]. For flat plates, Joshi [lo] compared four different 
propagation criteria and found that the propagation 
rate based on the criterion of ‘no overshoot in the 
mass flow rate during the one-dimensional process’ 
is the fastest, and usage of other criteria implies 
an unrealistic overshoot in the mass flow rate for a 
Boussinesq fluid. This was found to be in close 
agreement with experimental data in water. 

Besides the recent analysis of Velusamy and Garg 
[3] transient solutions for cylinders were carried out 
by Goldstein and Briggs [4], and by Dring and 
Gebhart [ll]. The latter authors presented exper- 
imental results for the transient average temperature 
of Nichrome wires in silicone oils and in air. They also 
compared their experimental results with the pure 
conduction results, and with a simplified quasi-static 
theory that yields a simple exponential solution for the 
temperature response. The quasi-static theory failed, 
however, for silicone fluids. Even for air, the con- 
duction solution was found to be better than that 
predicted by this theory. 
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NOMENCLATURE 

C thermal capacity of the cylinder per unit x dimensionless axial coordinate 
surface area x BR penetration distance of the leading edge 

CPrn specific heat of the cylinder material effect based on equation (9) 
9 acceleration due to gravity Xo, penetration distance of the leading edge 
Gr, modified local Grashof number effect based on equation (8) 
k thermal conductivity of the fluid XJ penetration distance of the leading edge 
LEE leading edge effect effect based on equation (10) 
Pr Prandtl number of the fluid xs penetration distance of the leading edge 
4 
m volumetric energy generation rate effect based on equation (12) 

d’ instantaneous energy generation rate XT penetration distance of the leading edge 
within the cylinder per unit surface effect based on equation (13) 
area X” penetration distance of the leading edge 

Q thermal capacity parameter effect based on equation (11). 
r radial coordinate measured from the 

centerline of the cylinder Greek symbols 
r. radius of the cylinder 
R dimensionless radial coordinate ; 

thermal diffusivity of the fluid 
coefficient of volumetric expansion of the 

RO fourth root of modified Grashof number fluid 
with r, as length V kinematic viscosity of the fluid 

R, edge of the boundary layer Pill density of the cylinder material 
t temperature of the fluid within the z dimensionless time 

boundary layer Q time 
T dimensionless temperature 4Q dummy variable. 
4 v velocity components in x, r directions, 

respectively Subscripts 
CJ, V dimensionless velocity components in X, s value at the cylinder surface 

R directions, respectively ss value at steady state 
X axial coordinate measured upward a3 value in the free-stream. 

It is well known that the boundary layer over a 
slender cylinder is thicker than that over a flat plate. 
Hence the results for a flat plate do not apply directly 
to slender cylinders. Moreover, for solid cylinders, 
Velusamy and Garg [3] found that the criterion pro- 
posed by Brown and Riley [9] yields a faster pro- 
pagating LEE than that of Joshi [lo] in air. They also 
found that the transient boundary layer equations 
predict an even faster propagation rate for the LEE 
than that based on the criterion of Brown and Riley 
[9]. Herein we compare the rate of propagation of the 
LEE for vertical solid cylinders of several radii under 
various heat flux conditions using different criteria for 
two fluids, air (Pr = 0.72) and water (Pr = 4.53). 

2. ANALYSIS 

The steady state natural convection boundary layer 
equations adjacent to a vertical, heat generating cyl- 
inder (see inset of Fig. 3) for laminar, constant prop- 
erty, viscous flow with Boussinesq approximation are 

ww I WV) i o 
ax aR 

subject to the following boundary and initial con- 
ditions 

u=o= v at R = R, for all X 

U=O=T atX=O for all R 

U*O,T+O asR+co forallX 

aT -- 
aR R=R. 

= 1 for all X (4) 

where 

X=tR,, R=kR,, (I=$, Jf=!!$ 
Cl 0 

T=k(t-tco)R 
4”ro 

o, Pr=y 
u’ R” = (kv2,;;q”) I,4 

R, being the fourth root of the modified Grashof 
number. 

During the transient, one-dimensional conduction 
forms of equations (2) and (3) are 

(5) 
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subject to the following boundary and initial 
conditions 

u=o at R = R, for all 7 

U+O,T-+O asR+co forallr 

U=O=T atr=O for all R 

aT, aT 
Qz - zi R=,q. 

= 1 for all 7 (7) 

where 

74R2 
r. 

o, Q = -&, T, = k(rsq":")Ro. 
0 0 

The boundary conditions in equation (7) imply that 
the temperature of the cylinder has been lumped in 
the radial direction. Justification for this assumption 
can be found in Velusamy and Garg [3]. Also, the 
effect of surface radiation can be neglected for a highly 
polished surface. 

The penetration distance of LEE at any instant 7 as 
proposed by Goldstein and Briggs [4] is 

X,.(T)=max[~U(~,R)dll] (8) 

where the velocity U(7, R) is calculated from the solu- 
tion of equations (5) and (6). 

The penetration distance of LEE as proposed by 
Brown and Riley [9] is 

X,,(7) = 
f 

’ max W($,R)lW. (9) 
0 

The penetration distance of LEE obtained by apply- 
ing the criterion of no overshoot in the mass flow 
rate during the one-dimensional process, proposed by 
Joshi [lo], is X, such that 

I 

R, 

I 

R, 
U(7, R)R dR = U,(R, X,)R dR. (10) 

0 0 

The penetration distance of LEE obtained by apply- 
ing the criterion of no overshoot in the maximum 
velocity during the one-dimensional process is Xu 
such that 

max W(7,R)J = max WAR, Xdl (11) 

where the maximum is sought with respect to R. 
The penetration distance of LEE obtained by apply- 

ing the criterion of no overshoot in the shear stress 
during the one-dimensional process is Xs such that 

373 &I = !$(R,, X,). (12) 

The penetration distance of LEE obtained by apply- 
ing the criterion of no overshoot in surface tem- 
perature during the one-dimensional process is Xr 
such that 

T(79RJ = T&LX,). (13) 
In equations (lo)-(13) subscript ‘ss’ represents 

steady state values obtained from the solution ofequa- 
tions (l)-(4). 

3. SOLUTION 

The boundary layer equations (l)-(3) subject to 
the boundary conditions (4) are solved by a finite 
difference marching technique. This technique is a 
modified form of the one described by Hornbeck [ 121 
for flow through a circular pipe. While marching in 
the axial direction, the nonlinearity of the inertial 
terms and the interlinkage of momentum and energy 
equations are retained. Equations (5) and (6) subject 
to the boundary and initial conditions (7) are solved 
by a fully implicit finite difference technique. The finite 
difference form of equations (l)-(7) is solved iter- 
atively by the Thomas Algorithm [12]. 

3.1. Computational details 
Variable grid sizes were used in the axial and radial 

directions. Along the axial direction 184 grids were 
found sufficient to obtain a grid-independent solution. 
The grid size in the marching axial direction was lo-’ 
near the leading edge and was gradually increased to 
2 near the downstream end. The number of grids in 
the radial direction was 171 for R, = 15 and 551 for 
R, = 0.5. Also, the smaller the value of R,, the finer 
was the radial grid size near the surface of the cylinder 
in order to take care of increasing curvature effects. 
The radial grid size near the cylinder was 0.1 for 
R, = 15 and 0.0125 for R, = 0.5. The step size in time 
was gradually increased from lo-’ to 2 for Pr = 0.72 
and from lo-’ to 0.2 for Pr = 4.53. A relaxation 
factor of 0.6 was used. 

In order to remain in the laminar region, we re- 
stricted the calculation domain in the axial direc- 
tion to 0 < X < 100 ; X = 100 implies Gr, = g/?q”x’/ 
(kv2) = 10’. The thermal capacity, pmCpm, of ordi- 
nary materials such as steel, nickel, copper, etc. is 
nearly the same. Hence p,Cp, was not considered as 
a parameter in the present analysis. It can be shown 
that Q = p,Cp,vR,/2k. Hence Q is directly pro- 
portional to R, as well as to the cylinder radius r,. If 
the curvature terms in equations (l)-(7) are dropped, 
the boundary layer and one-dimensional equations 
applicable to a flat plate are obtained. The results 
obtained by dropping these terms compare very well 
with the results of Joshi [lo] for a flat plate. To check 
the numerical solution of one-dimensional equations 
(5)-(7), we compared the values of U and Xo, against 
the analytical solution of Goldstein and Briggs [4]. A 
maximum difference of 0.08% in U and 1.2% in Xo, 
was found. Further verification of the present numeri- 
cal procedure is available in Velusamy and Garg [3]. 

4. RESULTS AND DISCUSSION 

The rate of propagation of the LEE predicted by 
various criteria for R, = 0.5 and Pr = 0.72 (air) are 
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(tPr)“2/Q - 

FIG. I. Penetration distance of LEE on a vertical cylinder in 
air. 

shown in Fig. 1. As already mentioned, the parameter 
R, combines the dimensional radius of the cylinder 
(rO) and heat flux (4”). Thus various values of R, can 
be interpreted as (i) various values of r0 for a fixed q”, 
or (ii) various values of q” for a fixed value of ra. For 
example, when a steel (25% Cr. 20% Ni) cylinder is 
placed in air at about 70°C R, = 0.5 implies a radius 
(r,) of 0.5 mm when the heat flux is 462 W m-*. For 
this case the dimensional time required for LEE to 
reach x = 100 mm is 7.36 s as per equation (9). Figure 
1 does not display the LEE propagation rate from 
equation (13) as it is several orders of magnitude less 
than the minimum value of the ordinate. 

From Fig. 1, it is clear that the propagation rate 
due to equation (9) is the fastest of all. In other words, 
for cylinders, equation (9) predicts no overshoot in 
any of the physical quantities such as mass flow rate, 
surface shear stress, etc. during the one-dimensional 
process. However, for a flat plate, equations (8) and 
(9) predict an overshoot in the mass flow rate which 
is unrealistic for a Boussinesq fluid [lo]. Amongst 
the criteria based on no overshoot in the physical 
quantities, the criterion of no overshoot in the mass 
flow rate yields the fastest and the criterion of no 
overshoot in the surface temperature yields the slow- 
est rate of propagation of LEE. Also, the LEE propa- 
gation rate is faster when determined in order from 
equations (lo)-(13). This order is the same as that 
observed by Joshi [lo] for a flat plate. Similar propa- 
gation rates for R, = 2 and 15 are shown in Figs. 2 
and 3 for air. In these cases also, the criterion of Brown 
and Riley [9] yields the fastest LEE propagation rate 
followed by the criterion in equation (10). By a con- 
version of results to dimensional form, it was found 
that the speed of propagation of the LEE decreases 
with the heat flux, and as the cylinder becomes thicker. 

The rate of propagation of LEE predicted by vari- 
ous criteria for R, = 0.5 and Pr = 4.53 (water) are 
shown in Fig. 4. For example, R, = 0.5 may imply a 
steel cylinder of radius 0.3125 mm when the heat flux 

lo-3 1 

1-T Pr)“2/Q - 

FIG. 2. Penetration distance of LEE on a vertical cylinder in 
air. 

is 462 W rne2. It is clear from Fig. 4 that during 
the initial period (T”~P~“*/Q) < 1, the criterion of 
equation (10) yields a faster propagation rate than 
others and is followed by the criteria in equations (9) 
and (1 I)-(13). This order is similar to that for a flat 
plate. But for larger time (s”‘Pr’“/Q) > 1, different 

I 16‘ 1c 
(TPr)“2/Q - 

FIG. 3. Penetration distance of LEE on a vertical cylinder in 
air. 
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FIG. 4. Penetration distance of LEE on a vertical cylinder in 
water. 

criteria yield faster propagation rates at different in- 
stants. For example, at 7 “*Pr l/*/Q = 2, the criterion of 
equation (I 1) is the fastest and that of equation (13) 
is the slowest, but at T”~P~“*/Q = 15, criterion of 
equation (10) is the slowest and that of equation (13) 
is the fastest. Thus, there is no unique criterion that 
always yields the fastest rate of propagation of LEE. 
This behavior is not observed for a flat plate as well 
as for a cylinder in air. Also, all curves display a 
maximum while this is not true for a flat plate. 

The rate of propagation of LEE for R0 = 2 and 15 
when Pr = 4.53 are presented in Figs. 5 and 6. In these 
cases also, there is no unique criterion that predicts 
the fastest propagation rate for LEE, and the results 
are similar to those in Fig. 4 for R0 = 0.5. Contrary 
to the observation made for air, there is no monotonic 
change in the propagation rate of LEE with the radius 
of the cylinder. Instead, it passes through a maximum 
as the radius of the cylinder increases, reaching the 
maximum at R, = 2.8 (for QBR), as seen following 

I 

Pr=4.53 
Q =4.00 
Ro=2.00 

1 10 

(tPr)"2/Q - 

FIG. 5. Penetration distance of LEE on a vertical cylinder in 
water. 
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FIG. 6. Penetration distance of LEE on a vertical cylinder in 
water. 

the conversion of results to dimensional form. This 
behavior is also exhibited by other criteria. However, 
the value of R, where the rate attains a maximum 
value differs from one criterion to the other. It was 
found that for identical conditions, the rate of propa- 
gation of LEE is slower in water than in air, as 
expected due to the larger flow vigor in flows in air. 

5. CONCLUSIONS 

The rate of propagation of the leading edge effect 
predicted by five different criteria are compared for 
vertical solid cylinders of various radii and heat flux 
conditions in air and water. The following conclusions 
are drawn for the parameter values studied : 

(a) For cylinders in water there is no unique cri- 
terion that would always result in the fastest rate of 
propagation of LEE. This is contrary to the obser- 
vation for a flat plate. 

(b) In the case of air, the thicker the cylinder, the 
slower is the rate of propagation of LEE based on any 
criterion. 

(c) In the case of water, the rate of propagation of 
LEE displays a maximum when plotted against the 
cylinder radius. 

(d) The rate of propagation of LEE is slower in 
water than in air, as expected. 
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